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ABSTRACT
Peer-to-peer (P2P) networks are very efficient for distribut-
ing content. We want to use this potential to allow not only
distribution but collaborative editing of this content. Exist-
ing collaborative editing systems are centralised or depend
on the number of sites. Such systems cannot scale when
deployed on P2P networks. In this paper, we propose a
new model for building a collaborative editing system. This
model is fully decentralised and does not depend on the
number of sites.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—Distributed applications; H.5.3 [Informa-
tion Interfaces and Presentation]: Group and Organiza-
tion Interfaces—Collaborative computing, theory and models

General Terms
Algorithms, Design, Human Factors

Keywords
CSCW, Collaborative editing, Optimistic replication, Con-
currency control

1. INTRODUCTION
Currently, peer-to-peer systems demonstrated how they

can ensure scalable content distribution. In their survey [4],
Androutsellis-Theotokis et al. wrote:

“Peer-to-peer content distribution systems rely
on the replication of content on more than one
node for improving the availability of content,
enhancing performance and resisting censorship
attempts.”

We want to reuse these characteristics not only for content
distribution but also for content editing. Currently, P2P
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networks mainly distribute immutable contents, we want to
distribute updates on this content and manage collabora-
tive editing on it. We are convinced that if we can deploy a
group editor framework on a P2P network, we open the way
for P2P content editing. It means that all existing collab-
orative editing applications such as CVS and Wiki can be
redeployed on P2P networks and take advantage of availabil-
ity improvements, performance enhancements and censor-
ship resistance of P2P networks. For instance, Wikipedia [2]
is currently a collaborative encyclopædia that has collected
more than 4,700,000 articles in more than 200 languages.
Wikipedia has more than 50 million of page requests per day.
200,000 changes are made every day [1]. However, Wikipedia
needs a costly infrastructure to handle the load. Hundreds
of thousands of dollars are spent every year to fund the in-
frastructure. A P2P massive collaborative editing system
would allow to distribute the service, tolerate failures, im-
prove performances, resist to censorship and share the cost
of the underlying infrastructure.

Collaborative editing systems such as CVS or Wikis are
currently centralised and cannot be adapted to peer-to-peer
networks. Collaborative systems based on the operational
transformation approach [7, 23] can be decentralised.

However, existing algorithms such as GOTO [23], ABT[16]
and SOCT2 [21] rely on vector clocks to detect concurrent
operations. OT approach supposes that each operation is
immediately executed locally, stored in a local log and then
broadcast to other sites in order to be re-executed and stored
in their logs. A vector clocks is associated to each opera-
tion. A vector clocks [17] is an array of logical clocks, one
clock per site. It is used to detect the happened-before rela-
tionship and therefore the concurrency between operation.
It causes no problem if the number of sites is fixed and low
but if the number of sites grows, the size of the vector clocks
is unbounded. Thus, messages exchanged between sites will
grow as well as the size of local operation. Also, the time ef-
ficiency of operation on vectors clocks will decline as vectors
clocks grow. Clearly, vectors clocks prevent these algorithms
to scale and represent a serious bottleneck for their deploy-
ment on P2P networks.

In this paper we propose a new model called WOOT for
building group editors that is suitable for dynamic P2P sys-
tems. Compared to existing decentralised group editor mod-
els, the number of sites involved in group editing is not a
variable.

The remainder of this paper is organised as follows: Sec-
tion 2 describes the WOOT approach and details the con-
sistency model. Section 3 presents a formal definition of



WOOT. Section 4 discusses about the correctness of the
WOOT algorithm. Section 5 compares with related previ-
ous works. Section 6 summarises the contributions of this
paper and presents some perspectives.

2. WOOT APPROACH
We consider a network of peers. In order to modify local

data, a peer generates operations. Each operation is:

1. executed immediately by the peer;

2. broadcast through the P2P network to all other peers.
The way that the new operation is broadcast is not un-
der the scope of this paper. It can be realised by epi-
demic propagation [8] with anti-entropy protocol [6].
This protocol ensures that dissemination is achieved
despite process crashes, disconnections, packet losses
and dynamic network topology. This protocol is used
for a long time by the Usenet network;

3. received and integrated by the other peers.

A group editor is consistent if it always maintains three
properties [24]: intention preservation, causal consistency
and convergence.

The intention of an operation is the effect observed on the
state when it was generated. Intention preservation criterion
as defined by Sun et al. [24] requires that for “any operation
op, the effects of executing op at all sites are the same as
the intention of op, and the effect of executing op does not
change the effects of independent operations”.

The operation intention definition depends of the data
manipulated and of the primitives that affect this data. We
consider peers replicating a linear structure. In this paper,
for simplicity, we focus on a string, but we can apply the
same algorithm for lists, blocks of texts, and ordered trees.
Every editing action of a linear structure can be expressed
in terms of the two following primitive operations:

• ins(a ≺ e ≺ b) inserts the element e between the ele-
ment a and the element b.

• del(e) deletes the element e.

We choose this set of operations instead of the equivalent
but more usual operations ins(p, e) and del(p) that inserts
the element e at position p and suppresses the element at
position p. The set we choose allows to execute the op-
erations rather independently of the state of the peer. As
shown in Figure 1 traditional operations can be directly ex-
ecuted when received. Our operations directly represent the
operation effect relation as defined in [14].

Since our definitions of operation are based on elements
rather than positions, the elements are uniquely identified.
Thus an operation del(’c’) can be executed unambiguously
on the string “acce”. Also, the case where a peer receives
ins(’a’ ≺ ’b’ ≺ ’c’) after ’c’ has been locally deleted must
be treated. We reuse the approach of “death certificates”
or “tombstones” used in Usenet. If an element is deleted
we maintain useful informations about it but not its whole
content. For a character, it is equivalent to make the char-
acter invisible. If we manage blocks instead of characters, it
means that we maintain the identity of the block, but not
its content.

site 1
“abcde”

site 2
“abcde”

ins(2,′1′) del(3)

a1bcde abde

del(3) ins(2,′1′)

a1cde a1bde

site 1
“abcde”

site 2
“abcde”

ins(a≺1≺b) del(c)

a1bcde abde

del′c) ins(a≺1≺b)

a1bde a1bde

Figure 1: Sets of primitive operations

Operations as defined have also precondition on their exe-
cution. The execution of del(e) requires e, or its tombstone,
to be present. The execution of ins(a ≺ e ≺ b) requires a
and b, or their tombstones, to be present. The respect of
preconditions ensures the causal consistency criteria [3]. All
operations are executed on a state where they are legal.

Finally, convergence criterion states that peers with the
same set of editing operations compute the same state of
the replicated data. A direct way to ensure convergence is
that the state of the data does not depend on the order that
a peer executes received operations.

site 1
“ab”

site 2
“ab”

site 3
“ab”

op1 = ins(a ≺ 1 ≺ b)

..

op2 = ins(a ≺ 2 ≺ b)
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(a) Generating partial orders
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(b) Ordering relationships

Figure 2: Partial orderings

Each insert operation generates two new order relation-
ships. However, it does not generate a total order, just a
partial one. For example, consider three sites where each site
generates one operation as presented in Figure 2(a). All re-
lationships between characters are represented in the Hasse
diagram depicted in Figure 2(b). From the diagram, we can
notice there are multiple states respecting intentions. All
of them are linear extensions of the partial order: “a312b”,



“a321b”, “a231b”. To achieve convergence, all sites must
compute the same linear extension.

Each time an operation is received, a new linear extension
is computed. This computation must be monotonic i.e. the
new linear extension must be compatible with all previous
ones. Indeed, if ’a’ was placed before ’b’, then a new linear
extension must not place ’b’ before ’a’. In Figure 2(a), exe-
cution of [op1, op2, op3] at site 1, must give the same result
as [op1, op3, op2] at site 3 and [op2, op1, op3] at site 2. Tradi-
tionally, a topological sort is used to find a linear extension
of a partial ordered set. However, a topological sort is not
monotonic, and consequently, not suitable in this context.

The challenge of the WOOT framework is to ensure con-
vergence by using a monotonic linear extension function.
Thus, when WOOT receives a new character c, it inserts
it between x and y i.e. x ≺ c ≺ y. However, there may
be some other characters between x and y, concurrently in-
serted or previously deleted. Thus, c must be placed some-
where among these characters. To break the tie between
two unordered characters, WOOT uses a total order based
on the unique character identifier.

However, this identifier order is not sufficient to achieve
convergence. For instance, when site 3 receives the operation
ins(a ≺ 2 ≺ b) there is already ’3’ and ’1’ between ’a’ and
’b’. If we suppose that the identifier order is ’1’<id’2’<id’3’,
the system has to choose between placing ’2’ after ’1’ or
before ’3’. The way we resolve this problem is to take into
account that on another site the order of execution can be
[op1, op2, op3]. On that hypothetical site, when ’2’ is received
there is only ’1’ between ’a’ and ’b’. Thus, ’2’ must be
placed after ’1’. WOOT uses the information that since the
insertion of character ’3’ depends on the presence of ’1’, ’3’
will always appear after ’1’. Thus, WOOT orders in priority
’2’ with ’1’ at every site.

Thus, to achieve convergence, the method applied to place
a new element is designed to be independent from the order
of reception of the characters.

3. WOOT FRAMEWORK
In this section, we present the WOOT model and its al-

gorithms. We formally define the data structure used by
WOOT and the order relations used to linearise charac-
ters. Finally, we describe the algorithms used by the WOOT
framework.

This paper focuses on sequence of characters but it is clear
that the WOOT framework can support any linear struc-
ture. Such a linear structure can be complex. An ordered
tree – like XML documents – can be mapped into a linear
structure.

A group editor is consistent if and only if, it satisfies the
following properties:

• Convergence When the same set of operations has
been executed at all sites, all copies of the shared doc-
ument are identical.

• Intention Preservation For any operation O, the
effects of executing O at all sites are the same as the
effects of executing O on its generation state.

• Causality preservation For any pair of operations
Oa and Ob , if Oa → Ob , then Oa is executed before
Ob at all sites.

This consistency model is nearly equivalent to the model
from Sun et al. [24]. The only difference concerns the defini-
tion of the relation→. In [24], the relation used is the Lam-
port’s happened-before relationship [13], and thus causality
is based on time. Indeed, based on this definition, it is
assumed one operation op2 causally depends on another op-
eration op1 if op2 is generated at one site after op1 has been
executed at that site. If this is a natural way of express-
ing causality, it only specifies a potential causal dependency
between operations. op2 might not depend on the execu-
tion effect of op1. For instance, consider a file system on
which two operations are performed op1 = createF ile(a)
next op2 = createF ile(b). There is no causal dependence
between these operations since op2 could be executed before
op1. But, using the Lamport’s happened-before relation, op1

precedes op2, and this ordering has to be preserved at every
site. On the contrary, in WOOT, the definition of the rela-
tion → relies on the semantic causal dependency as in [12].
This dependence is explicitly declared regarding the precon-
ditions of an operation. In this manner, in the previous
example, op1 could be executed before op2 at one site, and
op2 before op1 at another site. But, consider the two opera-
tions op1 = createDir(d) and op2 = createF ile(d/a). There
exists a causal dependency since op2 requires that the direc-
tory d must exist before being executed. This dependence
can be extracted from the preconditions of the operation
op2.

3.1 Data Model
WOOT manages W-characters by encapsulating the addi-

tional information about characters: unique identifier, visi-
bility and order relation.

Definition 1. A W-character c is a five-tuple
< id, α, v, idcp, idcn > where

• id is the identifier of the character.

• α is the alphabetical value of the effect character,

• v ∈ {True, False} indicates if the character is visible,

• idcp is the identifier of the previous W-character of c.

• idcn is the identifier of the next W-character of c.

The previous and the next W-characters of c are the W-
characters between which c has been inserted on its genera-
tion state.

Definition 2. The previous W-character of c is denoted
CP (c). The next W-character of c is denoted CN (c).

Each site s has a unique identifier numSites, a logical
clock Hs, a sequence strings of W-characters and a pool of
pending operations pools. The site identifier and the local
clock are used to identify characters in an unique way.

Definition 3. A character identifier is a pair (ns, ng)
where ns is the identifier of a site and ng is a natural num-
ber. When a W-character is generated at site s, its identifier
is set to (numSites, Hs).

Each time a W-character is generated at site s, the local
clock Hs is incremented. Since numSite is unique, this pair
forms a unique identifier for a character.



Definition 4. A W-string is an ordered sequence of W-
characters cbc1c2 . . . cnce where cb and ce are special W-
characters that mark the beginning and the ending of the
sequence.

We define the following functions for a W-string S:

• |S| denotes the length of S.

• S[p] denotes the element at the position p in S. We
state that the first element of W-string S is at position
0 and the last element is at position |S| − 1.

• pos(S, c) returns the position of element c in S.

• insert(S, c, p) inserts element c in S at position p.

• subseq(S, c, d) returns the part of S between the ele-
ments c and d (excluding c and d).

• contains(S, c) returns true if c can be found in S

The following functions are used to link the W-string with
the string user sees.

• value(S) is the representation of S (i.e. the sequence
of visible alphabetical values).

• ithV isible(S, i) is ith visible character of S.

The following two operations update a W-string:

• ins(c) inserts W-character c between its previous and
next characters under the precondition that the previ-
ous and next characters exist.

• del(c) deletes W-character c providing that c exists.

3.2 Orders Notations
From the relation between a W-character and its previous

and next characters, we can compute the precedence relation
≺. These relation represents the intention.

Definition 5. Let a and b be two W-characters. a ≺ b if
and only if, there exists a set of characters {c0, c1, ...ci} such
that a = c0, b = ci and CN (cj) = cj+1 or cj = CP (cj+1) for
all 0 ≤ j < i.

≺ is a binary relation over the set of W-characters. ≺ is
irreflexive, transitive and asymmetric. Thus, ≺ is a strict
partial order.

When no precedence relation can be established between
two characters, it is necessary to order them. Furthermore,
to ensure convergence, this order must be independent from
the state of the sites. For this purpose, we use the characters
identifier.

Definition 6. Let a and b be two W-characters with their
respective identifiers (nsa, nga) and (nsb, ngb). a <id b if
and only if (1) nsa < nsb or (2) nsa = nsb and nga < ngb.

Definition 7. Let S be a sequence, the relation ≤S is
defined as a ≤S b if and only if pos(S, a) ≤ pos(S, b). The
relation <S is defined as a <S b if and only if pos(S, a) <
pos(S, b).

site 1
“abc”

site 2
“abc”

op1 = ins(b ≺ 1 ≺ c)

%%JJJJJJJJJJJJ op2 = del(c)

tttttt

yyttttttab1c abc/

op2 op1

ab1c/ ab1c/

(a) (ins, del)

site 1
“abc”

site 2
“abc”

op1 = del(b)

!!CCCCCCCCCC op2 = del(c)

{{{{{

}}{{{{{ab/c abc/

op2 op1

ab/c/ ab/c/

(b) (del, del)

Figure 3: Commutation of (del, ins) and (del, del)

3.3 Algorithms
In order to ensure convergence whatever the reception or-

der of operations is, pairs of operations (ins, del), (del, del)
and (ins, ins) have to commute. Thanks to their defini-
tions, pairs of operations (ins, del) and (del, del) commute
as shown in Figure 3.

However, the definition of operation insert is not sufficient
to make the pair (ins, ins) commutable. In this section,
we then describe all the algorithms defined by WOOT. In
particular we present how WOOT computes a unique linear
extension of a partial order independently from the reception
order of operations.

Generation. For an operation op, type(op) denotes its type:
del or ins. Also, char(op) denotes the W-character manip-
ulated by the operation.

When a user interacts with the framework, she only sees
value(S). So, when an insert operation is generated the
user-interface only shows the visible position and the alpha-
betical value of the character to be inserted. For instance,
ins(2, a) in “xyz” is translated into ins(x ≺ a ≺ y).

GenerateIns(pos, α)
Hs := Hs + 1
let cp := ithV isible(strings, pos),

cn := ithV isible(strings, pos+ 1),
wchar :=< (numSites, Hs), α, T rue, cp.id, cn.id >

IntegrateIns(wchar, cp, cn)
broadcast ins(wchar)

Similarly, when a delete operation is generated, it is nec-
essary to retrieve the W-character from the position.

GenerateDel(pos)
let wchar := ithV isible(strings, pos)
IntegrateDel(wchar)
broadcast del(wchar)

Reception. Sites may receive operations with unsatisfied
preconditions. The isExecutable function checks precondi-
tions of an operation.

isExecutable(op)
let c := char(op)
if type(op) = del then

return contains(strings, c)
else



return contains(strings, CP (c))
and contains(strings, CN (c))

endif

To deal with pending operations each site maintains a
pool of operations.

Reception(op)
add op to pools

For instance, a site executes del(c) only if c is present. If
c is not present, the integration of the operation is delayed
until c is present.

Main()
loop

find op in pools such that isExecutable(op)
let c := char(op)
if type(op) = del then

IntegrateDel(c)
else

IntegrateIns(c, CP (c), CN (c))
endif

endloop

Integration. To integrate an operation del(c), we set the
visible flag of character c to False, irrespectively of its pre-
vious value.

IntegrateDel(c)
c.v := False

To integrate an operation ins(c) in strings, we need to
place c among all the characters between cp and cn. These
characters can be previously deleted characters or the ones
inserted by concurrent operations. When operation ins(c)
is executed at a site, procedure IntegrateIns(c, cp, cn) is
executed.

IntegrateIns(c, cp, cn)
let S := strings
let S′ := subseq(S, cp, cn)
if S′ = ∅ then
insert(S, c, pos(S, cn))

else
let L := cpd0d1 . . . dmcn where d0 . . . dm are the

W−char in S′ such that CP (di) ≤S cp
and cn ≤S CN (di)

let i := 1
while (i < |L| − 1) and (L[i] <id c) do
i := i+ 1

endwhile
IntegrateIns(c, L[i− 1], L[i])

endif

The algorithm orders characters with <id when no prece-
dence relation ≺ is available. S′ is the sequence of characters
between cp and cn. if S′ is empty, c is inserted between cp
and cn.

Otherwise, WOOT makes a copy of S′ in L and removes
from L all characters ci with CP (ci) or CN (ci) between cp
and cn. We explain this choice with Figure 4(a). When
op2 is integrated at site 3, op2 sees only the string “a1b”.
Character ’2’ is compared to character ’1’ and then inserted

site 1
“ab”

site 2
“ab”

site 3
“ab”

op1 = ins(a ≺ 1 ≺ b)

**VVVVVVVVVVVVVVVVVVVVVVVV op2 = ins(a ≺ 2 ≺ b)
~~~~

~~~~~~~~~~~

~~~~~~~~
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op3 = ins(a ≺ 3 ≺ 1)
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op1

a31b a1b

op2 op2

a312b a12b
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(a) Site 3 integrates op1, op2, op3 and site 1 inte-
grates op1, op3, op2
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(b) Cp and Cn relationships

Figure 4: IntegrateIns and reception orders

after ’1’. When op2 is integrated at site 1, op2 sees the string
“a31b”. To be sure to make the same choice as at site 3,
’2’ must be compared first with character ’1’ and maybe
next with character ’3’. WOOT detects that ’3’ must not
be compared to ’2’ because CN (3) is between CP (2) and
CN (2) (cf. Figure 4(b)). Thus, another site may exist where
character ’2’ is integrated and character ’3’ is not yet arrived
as in Figure 4(a) at site 3.

By applying this strategy, we are sure that all characters
in L are sorted by the <id relation (see Theorem 3). Next,
WOOT has just to insert c in this sorted list. i is the insert
position of c in L and WOOT makes a recursive call to
IntegratedIns(c, L[i − 1], L[i]) where the subsequence of S
bounded by [L[i−1],L[i]] is strictly shorter than the sequence
bounded by [cp, cn].

3.4 Example
Suppose that three sites are in the initial state “cbce”. We

consider the scenario shown by Figure 5(a). It generates the
orderings depicted by the Hasse diagram from Figure 5(b).
The relation <id is defined as follows : ’1’ <id ’2’ <id ’3’
<id ’4’.

• Integration at Site 3.

Site 3 receives o1 and then generates o3 and o4. Thus,
site 3 gets in the state “cb314ce”.

It integrates o2 = ins(cb ≺ 2 ≺ ce). ’2’ must be placed
among the characters between cb and ce. Thus, S′



site 1
“cbce”
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“cbce”
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o1 = ins(cb ≺ 1 ≺ ce)
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(b) Hasse diagram

Figure 5: WOOT integration example

is “314”. CN (3) and CP (4) are between cb and ce
so only ’1’ remains in L. WOOT compares ’2’ to ’1’
according to relation <id. ’1’ <id ’2’; therefore ’2’
must be inserted after ’1’. Integration procedure is
called recursively between ’1’ and ce. Only ’4’ remains
in L. ’2’ must be inserted before ’4’ as ’2’ <id ’4’. Thus
’2’ must be inserted between ’1’ and ’4’.

Finally, state of Site 3 becomes “cb3124ce”.

• Integration at Site 2

Site 2 generates o2 to get state “cb2ce”.

It integrates o1 = ins(cb ≺ 1 ≺ ce). ’1’ and ’2’ have the
same previous and next characters. ’1’ must ordered
with ’2’ according to relation <id. As ’1’ <id ’2’, ’1’ is
inserted before ’2’. Site 2 has the state “cb12ce”.

It integrates o3 = ins(cb ≺ 3 ≺ 1). As there is no
character between cb and ’1’, ’3’ is directly inserted.
Site 2 obtains state “cb312ce”.

It integrates o4 = ins(1 ≺ 4 ≺ ce). ’4’ is compared
with ’2’ according to <id. As ’2’ <id ’4’, ’4’ must be
inserted after ’2’. Thus, it is inserted between ’2’ and
ce.

Finally, site 2 gets in state “cb3124ce”.

• Integration at Site 1

Site 1 generates o1 to obtain state “cb1ce”. What-
ever arrival orders of o2, o3 and o4, WOOT computes
cb3124ce. In all cases, the final string is “3124” and
convergence and intention preservation are ensured.

4. CORRECTNESS

Theorem 1. The algorithm of integration terminates.

Proof. Proof by contradiction.
The algorithm does not terminate if and only if the re-

cursive call is not done on a strict subsequence. This can
happen only if we get, non-empty S′ and L = cpcn. If
L = cpcn, every character in this S′ has its predecessor or
successor in S′. At least, the first integrated character be-
tween cp and cn has its previous and next characters outside
of S′. Indeed, the characters have been generated in a strict
order.

Thus, there are at least 3 characters in L. So the recur-
sive call is done on a strictly smaller subsequence and the
algorithm terminates.

Intention preservation. Our linearisation order must re-
spect the precedence order defined when operations are gen-
erated.

Theorem 2. Relation <s built by WOOT at each site, is
a linear extension of the relation ≺.

Proof. Generation of an operation does not modify rela-
tion≺. This relation is only modified through IntegrateIns.
The integration of character c is always done by its insertion
between CP (c) and CN (c). Thus <s is a linear extension of
≺.

However, ensuring intention preservation is not sufficient.
For instance, if two sites insert concurrently ’x’ and ’y’ be-
tween the same characters ’a’ and ’b’, the resulting strings
can be “axyb” and “ayxb”. These two linear extensions
satisfy intention preservation but do not converge.

WOOT is well-founded. The procedure IntegrateIns is
be well-founded if L is sorted by the <id relationship. All the
characters in L have their previous and their next characters
outside S′. Thus, each of them is between the previous
and the next characters of each other. We say that such
characters are W-concurrent.

Definition 8. Let x and y be two W-characters inte-
grated at a site S. We say that x and y are W-concurrent
when CP (x) <S y <S CN (x) and CP (y) <S x <S CN (y).

The following theorem says that W-concurrent characters
are ordered according <id total order.

Theorem 3. Let x and y be two W-concurrent charac-
ters, we get that x <S y if and only if x <id y.

Proof. Proof by induction.
Let’s assume that every W-concurrent characters are or-

dered according to <id. Now, we demonstrate by contra-
diction that the integration of a new W-character x will be
consistent with the theorem.
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Figure 6: L is sorted by <id

Let’s suppose x and y are W-concurrent and x <S y, but
y <id x. By definition of IntegrateIns, this is possible only
if x is not compared to y, i.e. y neither belongs to any
sequence L during the integration of x.

Thus, in all the recursive calls to IntegrateIns(x, cp, cn),
we get either:

(1) y ∈ S′ and y /∈ L,

(2) or y /∈ S′ and CP (y) ≤S cp <S cn ≤S y <S CN (y).

The integration is a series of steps like (1) followed by a
series of steps like (2). During the last step like (1), we get
CP (y) ≤S L[i− 1] <S L[i] ≤S y <S CN (y) and L[i− 1] <id
x <id L[i] (cf. Figure 6). Since L[i] belongs to L, we get
CP (L[i]) ≤S cp <S y <S cn ≤S CN (L[i]). Thus, L[i] is
W-concurrent to y and these both W-characters are ordered
according to <id.

However, we get y <id x <id L[i] and L[i] ≤S y. We
obtain a contradiction.

Thus, L is sorted by the <id relationship, and our algo-
rithm is well-founded.

Convergence. To verify the correctness of our algorithm,
we have used the TLC model-checker on a specification mod-
elled on the TLA+ specification language [28]. Note that
model-checking techniques are particularly suited to verify
concurrent systems. With the TLC model checker we have
verified a bounded model of WOOT. The TLA specification
has been described in more details in a research report [18].

5. RELATED WORK
In the last decade, the operational transformation ap-

proach [7, 24] revealed as a suitable control mechanism for
maintaining consistency of shared data in collaborative edit-
ing. In this approach, local operations are executed immedi-
ately after their generation, whilst remote operations must
be transformed regarding concurrently executed operations.
Algorithms based on this approach can be classified mainly
in two categories. The first category regroups algorithms
such as SOCT4 [27] and FORCE [20]. These algorithms
use a central server for exchanging and timing operations,
and thus, they are not suitable for deploying a group ed-
itor on a peer-to-peer network. The second category in-
cludes algorithms that are completely decentralised such as
SOCT2 [21], GOTO [23], LBT [15] and ABT [16]. In these
algorithms, after an operation is generated at one site, it is
broadcast to all other sites. This diffusion relies on a group
multicast protocol which generally need to know all other
sites involved in the collaboration. Moreover, in order to in-
tegrate in their natural order operations which are causally
related, each operation is timed using a vector clocks. The

size of a vector clocks is proportional to the number of sites
in the group. Consequently, these algorithms are not appro-
priate for peer-to-peer networks due to the huge number of
sites constituting the system and the fact a site never knows
all other sites participating to the collaboration. On the
contrary, WOOT does not use vector clocks, it maintains a
unique identifier for every character that ever appears in the
system. However, maintaining such unique identifier should
not affect the scalability of the approach. An identifier has
a constant size which is equal to the size of only one compo-
nent of the vector clocks. Indeed, a unique identifier is one
couple (numSites, Hs), while a vector clocks is a vector of
couples (numSitei, Hi) where 0 ≤ i < number of site. As
a future work, we plan to study in more details the impact
of using unique identifiers comparing to vectors clocks to
confirm this assertion.

Nevertheless, it is worth to point out that propositions
based on the operational transformation were the first work
to discuss about preserving intentions of operations. In [24],
Sun et al. state that a consistency maintenance mecha-
nism must ensure convergence of copies but also preserve
the original effects of operations. Unfortunately, they did
not define formally this criterion and did not provide any
trail on how verifying if an algorithm preserves operations
intentions. The model proposed by Li et al. [14] was the
first proposition to define formally and explicitly the inten-
tions of its operations. Our definition of local effect of our
operations is quite similar to their definition – at all sites, a
character will always be inserted after its previous character
and before its next character –.

In collaborative editing, the Mark & Retrace technique [10]
is the closest work to our proposal. This technique is based
on two procedures executed consecutively: the retrace and
range-scan procedures. The range-scan procedure is quite
similar to our IntegrateIns procedure. Its role is to insert
a character between its previous cp and next character cn
while arranging it among characters that have been concur-
rently inserted or deleted between cp and cn. However, in
the Mark & Retrace technique, an insert operation does not
store the previous and next characters between which it will
insert. It stores only the insert position. Consequently, the
algorithm has to seek these two characters. This is done by
the retrace procedure which is called when a remote oper-
ation has to be integrated. Its goal is to retrace the docu-
ment’s address space to the state at the time the operation
was generated. Characters which were present at the gen-
eration time – including the ones which have been deleted
afterwards – are marked effective, while all other characters
are set ineffective. To time operations, a vector clocks is
associated to each operation. The use of vector clocks is a
weak point in large-scale systems such as peer-to-peer sys-
tems, and the necessity to execute the retracing procedure
each time a remote operation is received is too costly. On the
contrary, WOOT identifies in a unique manner each char-
acter, and, the insert operation stores the previous and the
next characters between which the insertion has to be per-
formed. These features restrain the retracing mechanism.

IceCube [11] is able to ensure convergence and intention
preservation. But, in IceCube, concurrent operations are
merged at one site. It means that all concurrent operations
must be sent at one site for merging. Then, the merged log
must be dispatched to all sites. Consequently, all sites must
be connected during reconciliation and frozen until reconcil-



iation is completed. These constraints are not compatible
with peer-to-peer networks. Compared to IceCube, WOOT
proposes a distributed merge. Each site merges its own copy
as soon as operations are received. The result is independent
of the reception order.

The Bayou system [25] was proposed to support collabo-
ration among users who cannot be or decide not to be con-
tinuously connected. Operations are broadcast between site
using an epidemic propagation protocol. It should make it
suitable for deploying a collaborative application on a peer-
to-peer network. Unfortunately, in order to ensure conver-
gence of copies, Bayou has to arrange eventually operations
in the same order. To achieve this, it relies on a primary
site that will enforce a global continuous order on a growing
prefix of history. Using such a primary site may constitute
a congestion point, and, anyway is not suitable in a peer-to-
peer system.

The Thomas’ write rule [26] is heavily used to achieve con-
vergence in system based on an epidemic propagation. To
ensure scalability Thomas’ write rule needs to implement
the strategy of “Last Writer Wins”. However, this strategy
does not ensure intention preservation: the last update is
applied while other concurrent updates are simply ignored.
Consequently, it is not possible to build a collaborative edit-
ing system with Thomas’ write rule.

CVS [5] is a popular configuration management tool. It
relies on an optimistic replication algorithm to allow users
working in isolation while ensuring convergence of copies.
It also uses a central server that enforces a global contin-
uous order on updates. For example, if n sites produce a
change, during round 1 only one site will be able to publish
its changes. During round 2 all other sites have to update
their replica. During round 3, only one site will be able to
commit and so on. Thus, convergence will be achieved in
(2n − 1) rounds. Compared to CVS, WOOT converges in
one round.

In summary, WOOT is an optimistic replication algorithm
that ensures convergence and intention preservation. It re-
quires no vector clocks contrary to most operational trans-
formation based algorithms. Unlike IceCube, it relies on a
distributed merge. Moreover, WOOT does not require a
primary site as Bayou. Unlike systems based on Thomas’
write rule, WOOT ensures intentions preservation. Finally,
compared to CVS, WOOT converges in one round. As far as
we are aware, all these characteristics make WOOT the only
model suitable for deploying group editors on peer-to-peer
networks.

However, WOOT retains tombstones to record deleted
characters. So, the space overhead of tombstones grows in-
definitely. We can use an expiration period for garbaging
deleted characters but this method is unsafe. We can also
use a two-phase protocol to purge safely the tombstones as
in [19] but all sites must be alive for the algorithm to make
progress. For now, we prefer to keep tombstones for en-
abling group undo. Group undo is an important feature for
collaborative editing [22, 9]. Group undo allows not only
to undo the last operation, but any operation in the exe-
cuted log. It requires to keep tombstones at least for a long
time. Anyway, we need an algorithm to garbage old deleted
characters.

6. CONCLUSION
WOOT is group editor framework suitable for peer-to-

peer networks. P2P networks help group editors to func-
tion, scale and self organise in presence of a highly transient
population of node, network and computer failures. Group
editors allow P2P systems not only to distribute contents
but also to edit contents.

Compared to decentralised distributed systems, WOOT
does not require vector clocks to ensure convergence, inten-
tions and causality.

WOOT is only a first step towards massive collaborative
editing. It solves only the problem of data consistency on
a P2P collaborative system. Many problems are now open:
how to ensure security on these systems? how to provide
awareness? how to enact collaborative processes? how to
replicate just fragment of data? All these questions need
answers before starting to port a system such as Wikipedia
on a P2P network.
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